
Improving remote sensing observations of the 
water cycle

with analytical methods, simple statistical models, 
and more complex machine-learning models

Matthew Heberger

Filipe Aires

Victor Pellet

Paris Observatory &  
Sorbonne University

December 15, 2023



My PhD research focused on optimizing estimates of the 
water cycle globally, at the pixel scale
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“Water budgets are important tools that water users and 
managers use to quantify the hydrologic cycle”*
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*Healy et al. (2007). Water Budgets: Foundations for Effective Water-Resources and 

Environmental Management. USGS. 



The fundamental problem: remote sensing datasets are 
“incoherent” – meaning the water cycle is not closed
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We see strong spatial patterns in the water cycle “imbalance”
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Researchers have used a variety of methods to solve this 
problem, but to date, no consensus has emerged on which is best
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This study’s input datasets include several gridded datasets 
from remote sensing and models, covering 2000 to 2019

7

Data Set Begin End
Temporal 

resolution

Spatial 

resolution
Reference

Precipitation

GPCP v2.3 1979 present daily, monthly 2.5° Adler et al. 2018.

GPM-IMERG 2000 present daily 0.10º Huffman et al. 2019

MSWEP 1979 present daily, monthly 0.10° Beck et al. 2019.

Evapotranspiration

GLEAM v3.5A 1980 present daily 0.25º Miralles et al. 2011; Martens et al. 

2017

GLEAM v3.5B 2003 present daily 0.25º idem.

ERA5 1950 present 3-hour, daily, 

monthly

0.25º Hersbach, et al. 2018.

Water Storage

GRACE-CSR 2002 present quasi-monthly* 0.25° Save, Bettadpur, and Tapley, 2016

GRACE-JPL 2002 present quasi-monthly* 0.50° Landerer, 2021; Landerer et al. 2020

GRACE-GSFC 2002 present quasi-monthly* 0.50º Loomis, Luthcke, and Sabaka, 2019

Runoff

GRUN 1902 2019 monthly 0.5° Ghiggi et al. 2021



This study was conducted over 1,698 river basins, ranging in 
size from 20,000 to 50,000 km²
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Optimal interpolation is a closed-form analytical solution that 
modifies water cycle components to close the water budget
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one set of observations, 

(one basin, one month)

Post-filter matrix has two components: 

(1) Drive water cycle residual to zero

(2) Make the minimum changes necessary to the

water cycle components



Optimal interpolation does an excellent job at closing the 
water cycle at the basin scale
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Before:
I = 6 ± 47 mm/month

After 
I = 0 for all I



…usually without changing the original observations too 
much
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Optimal interpolation is appealing because

• It’s simple

• It has a basis in information theory

• It exploits information on uncertainties in each water cycle 
component

• It makes the smallest changes necessary to achieve closure

But! 

• It requires all 4 water cycle components 

• This means it can only be applied over river basins, where we 
have observations of river discharge.
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To extrapolate this solution to the pixel scale, we tried using 
simple linear models plus spatial interpolation
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The regression parameters for each variable were estimated 
at the pixel scale with spatial interpolation
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Interpolated 
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We fit neural network models to remote sensing datasets to 
approximate the solution from optimal interpolation
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We used ancillary environmental variables to

describe the local environment and improve the

model’s fit

There are separate layers for calibration and mixture



Ancillary environmental data includes static and time-varying
variables that have a clear link to the hydrologic cycle
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8 out of the 12 variables significantly improved

the fit of the neural network model



Here is an example of the output, over a single river basin, the 
White River at Petersburg, Indiana, USA (29,000 km²)
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Here is an example of the output, over a single river basin, the 
White River at Petersburg, Indiana, USA (29,000 km²)
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month of the year



At the river basin scale, our model reduces the mean and 
variance of the water cycle “imbalance”
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At the pixel scale, the imbalance in the water cycle is 
improved almost everywhere
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We also evaluated our recalibrated EO datasets by comparing 
them to ground-based observations of P, E, and R. 
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For TWSC, our model works as well as, and sometimes better, 
than state of the art assimilation models
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The neural network 

model gives a higher 

correlation R, and 

lower root mean 

square error 

over 32 large river basins



Water-budget based methods can be used to estimate 
missing water cycle components
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• For example, we can calculate basin evapotranspiration with E = P − ΔS − R

• We found that such estimates are significantly improved when using the neural 

network-calibrated datasets, compared to using uncorrected remote sensing 

data.

Goodness of fit of E 

estimated by the water 

budget method, 

compared to observed 

E at 117 flux towers



Statistical models allow us to “recalibrate” and optimize remote sensing data 

at both the river basin and pixel scale. 

The results can be used to create water budgets, estimate missing water 

cycle components, or to show where satellite datasets are biased and could 

potentially be improved. 

In summary, statistical and machine learning models 
can help “close the water cycle” at the global scale

Questions?
For data, code, my 

thesis, and contact info: 

https://mghydro.com 
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